

- · How to run the MMP,
- Surface Klt sinpularibies.

Theorem (Relative cone theorem): Let
$$X \xrightarrow{P} Z$$
 be
a projective contraction of alg var over K , $\overline{K} = K \notin dnr(K) = 0$.
 (X, Δ) Kit pair. Then:
 (X, Δ) and $(X, -\Delta)$ for any $(X, -\Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ for a formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ for any $(X, -\Delta)$ formalise $+ \sum_{i=1}^{n} (X_i - \Delta)$.
 $(X, -\Delta)$ formalise $+ \sum$

U

1

Some recent work:

Bhatt & Lurie proved a version of Riemann - Hilbert correspondence in posibive char.

Bhatt proved the Cohen-Maczulayness of the integral closure of an excellent Noetherian domain

Using the above the techniques contained above the MMP his been recently generalized in two different directions:

1.- In dimension three in mixed charact (over Spec Z.).

Hurzyamz - Lyu 2021

Why MMP relative over base?

MMP to study families of algebraic variebies.

X projective smooth Kx is ample over C*.

Compactify Carbibrary centrel giber, meybe not normer). C * J. Log resolution (many components, Kx not ample over C)

Run MMP over the base.

 $\chi \longrightarrow \overline{\chi}$ so that $K\overline{x}$ is nef over the base the sinpularities of Xo are slc. Means. normalization is le $\mathbb{G}^* \longrightarrow \mathbb{G}$ hodal sing at cod one points.

MMP to study singularities. $z \in Z$ a lop resolution $X \xrightarrow{\varphi} Z$. $\mathscr{C}^{*}(\mathsf{K}_{z}) = \mathsf{K}_{x} + \Delta$ Perturb coefficients of Δ : • If >1, you can decrease to 1 • If <0, you can increase them Eso. Obtain a new boundary B. Runa MMP for Kx+B over Z, you obtain a partial resolution of singularities which has the singularities of the minimal model propram. Remark: By studying the exceptional divisors of the previous partial resolution & the sing of the MNP. you can understand the singularities of Z=z.

Flipping contractions & flips:

Kx -neg curves

Definition: $X \xrightarrow{\varrho} W$ is a flipping contraction for (X, Δ) kit if $\left| \begin{array}{c} \partial - f_{actorial} \\ - (K_{x+\Delta}) \end{array}\right| p(X/W) = 1$, \mathcal{C} is a small birational contr., and $- (K_{x+\Delta})$ is ample over W. $\left(\begin{array}{c} Y_{ou} \\ Y_{ou} \\ \end{array}\right)$ have small morphisms with high p.

Remark: W is never Q-factorial. Kw is not Q-Carbier.
Definition: Let
$$X \xrightarrow{e} W$$
 be a flippose contraction. for $(X \cdot \Delta)$.
We say that $X \xrightarrow{-\pi} X^{*}$ is a flip if it is a small
birational map : $Kx^{+} + \Delta^{+}$ is Q-Cartier $(\Delta^{+} = \pi \cdot \pi \Delta)$
There is a proj morphism $Q^{+}: X^{+} \longrightarrow W$ so that
 $Kx^{+} + \Delta^{+}$ is ample over W.
Lemma 1: $j: X \xrightarrow{-} Y$ small birational map between
hormal var. $D \in WDiv(X)$. Then
 $H^{o}(O \times CD)) \cong H^{o}(O_{T}(f \cdot \pi D))$.
Picture of flip:
 $x \xrightarrow{\pi} X^{+} \xrightarrow{\pi} Kx^{+} \xrightarrow{\pi} Kx^{+}$ -poshue cover

Lemma 2: Let X -> W be a flipping cont for (X, A). Let $X \xrightarrow{\pi} X^*$ be a flip. Then $P(X) = P(X^+)$ and X^+ is Q-factorial. Moreover, $P(X/W) = P(X^*/W) = 1$. Proof: Dt on Xt, D on X the push-forward. Find r such that $R \cdot (D + r(K_x + \Delta)) = 0$ Here R is the extremal ray defining the flipping contraction. We know X is Q-factorial. Hence $m (D + r C(K_x + \Delta))$ is Carbier for $m \gg 0$. $M (D + r(K_x + \Delta)) \sim \ell^*(D_w)$ for some D_w Carbier $mD^{+} = m\pi D \sim (\ell^{+})^{*}D_{W} - (mr)(K_{X^{+}} + \Delta^{+})$ Carbier Cartier $\chi \xrightarrow{n} \chi^+$ Carbrer. e / e+ W For equality of P, we prove that TC* induces an isomorphism between Weil divisors moduls ~. П

,

. 1

Proposibion. Let e: X -> W be a flipping conbraction. for (X, a) Klt. The flip exists iff $\bigoplus_{m\geq 0} \ell * O_{\times} (m(K_{\times}+\Delta))$ 15 a J.g. Ow-algebra. If this is the case, then $X^{+} := \Pr_{\mathsf{v}} \left(\bigoplus_{m \ge 0} \ell * \mathcal{O}_{\mathsf{x}} (\mathsf{m}(\mathsf{K}_{\mathsf{x}} + \Delta)) \right).$ $X \xrightarrow{\mathcal{R}} X^+$. The is small Proof: Assume e jet W $\bigoplus_{n\geq 0} \ell_* (\mathcal{O}_{\times}(\mathfrak{m}(\mathsf{K}_{\times}+\Delta))) \simeq \bigoplus_{m\geq 0} \ell_{\times}^+ (\mathcal{O}_{\times^+}(\mathfrak{m}(\mathsf{K}_{\times^+}+\Delta^+)))$ by Lemma 1. Moreover $K_{X^+} + \Delta^+$ is ample over W. Hence, $\operatorname{Proj}_{W}\left(\bigoplus_{m\geq o} \mathcal{P}^{\dagger}_{x} \left(\mathcal{O}_{X^{\dagger}}\left(\operatorname{Im}\left(\operatorname{K}_{X^{\dagger}}+\Delta^{\dagger}\right)\right)\right) \simeq X^{\dagger}$. Assume $\bigoplus_{m \ge 0} \mathcal{C}_{x} \mathcal{O}_{x} (m(K_{x} + \Delta))$ is fig $\mathcal{O}_{w} - 2 \log \theta_{w}$. and define X+ = Proj (----). $X \xrightarrow{R} \rightarrow X^{\dagger}$ is an isom in cod one X. it could happen that there exists $E \subseteq X^{t}$ s.t $\pi_{*}^{t} E$ is not a div.

 $X \xrightarrow{\varphi} W$ is an isomorphism over $X \setminus E_{X}Ce$). of the structure shert on XIExcer. Hence $X^+ - \stackrel{n^{-1}}{\longrightarrow} X$ an isonouphism over XIExCes. 15 E / e E is a mapped to a higher et V codim cycle by et. W $\ell_*^+ \mathcal{O}_{X^+}(L) \simeq \ell_* \mathcal{O}_{X}(m(K_{X^+}\Delta)) \simeq \mathcal{O}_{W}(m(K_{W^+}\ell_*\Delta))$ Jor some m>0. Since E is exc over W, we have $(\mathcal{O}_{W} (tm(Kw + \mathcal{P}_{W} \Delta)) = \mathcal{P}_{*}^{\dagger} (\mathcal{O}_{X^{\dagger}} (t) - \mathcal{P}_{*} (\mathcal{O}_{X^{\dagger}} (t) (t)))$ We have a natural inclusion -> « $\ell^{\dagger}_{*} (\mathcal{O}_{X^{\dagger}} (t) (E) \longrightarrow (\mathcal{O}_{W} (t_{M} (K_{W^{\dagger}} \ell_{X} \Delta)))$ No contracted divisors by et. Thus, re is small. By Lemma 2, p(X/W) = p(X+/W) = 1 []

Finite generation of the canonical my: Conj : Let $X \xrightarrow{e} Z$ proj monphism (X, Δ) klt. Then $\bigoplus m_{20} \ \mbox{Pr} (m(K_x + \Delta))$ is a fig O_z - algebra. Rmk: X smooth proj variety, $\bigoplus_{m \ge 0} H^{\circ}(X, O_{\times}(mK_{\times}))$ is finitely generabed over IX. (is a part case of conj). How to run the MMP: X1 to be Q-fretorial. 1.- (XI, () Klt pair, Xi -> Z proj morph. If $K_{x_i} + \Delta_i$ not over Z, then we stop and call this 2 minimul model over Z. If $K \times i + \Delta i$ is not net over Z, we consider an extremel ray R in NE(Xi/Z) which is (Kxi+Ai)-neg. 2.- Let X: -> W be the contraction defined by R. 2) Jim (W) < Jim (X:), -Kx: ample over W and the general fiber klt. Hence, the general fiber is klb Fano. In this case we shop and call this a Mon Jibor space.

b)
$$\dim X = \dim W$$
: and $X \xrightarrow{f} W$ contains a divisor
in its exc locos. By Lemma 3 this is a divisorial contradion.
W is Ω -factorial, $P(W|Z) = P(X|Z) - 1$.
We denote $X_{i+1} = W \land \Delta_{i+1} = f * (\Delta_i)$.
Return to step 1.
Return to step 1.
Remark : Using neg Lemma, we can prove (X_{i+1}, Δ_{i+1})
is kit.
c) $\dim (X) = \dim (W)$ and $X \longrightarrow W$ small bir mep.
"We find the flip" $X \xrightarrow{R} - X^+$ and define
 $X_{i+1} = X^+$ and $\Delta_{i+1} = \mathbb{T} * \Delta_i$.
By Lemma 2 X neg lemma, X_{i+1} is Ω -fact provided
that X_i is Ω -factorial and $P(X_i / Z) = P(X_{i+1} / Z)$.
Return to step 1.
Poss: ble outcomes: Minimal Model or Mori fiber space
Abundance J (MFS).
Canonical Model

,

Singularities when running the MMP:

Proposition: Let (X, Δ) be a lop canonical pair (resp. Klt, canonical, terminal). Let $(X \land \Delta) \xrightarrow{\pi} (X' \land \Delta')$ be a step of the $(K_{x}+\Delta) - MMP$. Then (X', Δ') is lop canonical (resp. Klt, canonical, terminal). Let E be a prime divisor over X whose center is contained in Excret. Then, we have an inequality $X \xrightarrow{r} X^{\dagger}$ $\alpha_{E}(X', \Delta') > \alpha_{E}(X, \Delta)$ e /et **Proof**: Let $p: Y \longrightarrow X$ be a log resolution of (X, Δ) which dominates X'. Let $g: T \longrightarrow X'$ be the Corresponding projective birational morphism Write $p^*(K_x + \Delta) = q^*(K_x + \Delta') + F_1 - F_2$, Where Fi & F2 are effective with fisjoint support. The divisor FI-FZ is grexceptional, by the projection formula it is onti-net over X'.

Since the push-forward of
$$F_1 - F_2$$
 to X' is eff,
we conclude that $F_2 = 0$, so the first statement
holds. Indeed, for any $E \subseteq Y$ prime we have:

$$\Delta E(X, \Delta) = \Delta E(X, \Delta) + Coeff E(FL)$$

$$\geq \alpha E(X, \Delta).$$

Now, we want to prove that if
$$C_{X}(E) \subseteq E_{X}(\pi)$$
,
then (1) is strict. Equivalently that $E \subseteq \text{supp}(F_{3})$.
Note that $C_{X}(E) \subseteq E_{X}(\pi^{-1})$. Applying the 2nd part
of negability Lemme we get that either
i) $E \subseteq \text{supp}(F_{1})$, or
ii) $E \cap \text{supp}(F_{1}) = \emptyset$.
Take $C \subseteq Y$ and mapping to a point in X' so that
 $E \subseteq C = 0$. Hence, we conclude that
 $p^{*}(K_{X} + \Delta)$. $C > 0$

This leads to a contradiction because $-p^*(K_x + \Delta)$ is not over W.

Surjace singularities of the MMP:

Theorem: The following statements hold: 1. $(z \in X)$ is a surface Kilt singularity \iff $(z \in X)$ is the publicate of $(o \in \mathbb{C}^2)$ by a finite subproup of GL2 (Q). 2. (x GX) a canonical surface singularity \iff $(x \in X)$ is the quotient of $(o \in \mathbb{C}^2)$ by a finite subproup of SL2(C) 3. $(x \in X)$ is terminal surface sry $\iff x$ is a smooth point X Idea: Kx is Q - Cartier, we can take its index one cover. $G \subseteq Y \xrightarrow{\pi} X \qquad X = Y/G$ Jinibe Galois guzsi-étale Kr is a Carbier division, Y is apain kilt and since Kr is carbier its lop discrepancies are in Ziso so is construct

Du Val singularities: Theorem: Let xex be a canonical surface sing. Then XEX has embedding dimension three. Morcover, up to analytic change of coordinates, the following is a complete list of the possible singularities : A: An (n>>) has eg $x^2 + y^2 + z^{n+1} = 0$ and dual priph o-o-o-o-o. n vertices D: Dn (n + 4) has an $X^2 + y^2 = + z^{n-1} = 0$ and dual preph0 n yertres. $E: E_6: x^2 + y^3 + z^9 = 0$ 0-0-0-0-0 _____ $E_{7}: x^{3} + y^{3} + yz^{3} = 0$ 0-0-0-0-0-0. $E_8 = x^2 + y^3 + z^5 = 0$ Idea of the proof: Study dual praph of the resolution & usc

W. preparation theorem to write town the egs.