M inimal Model Program

Learning Seminar.

$$
\text { Week } 6
$$

- Relative versions.
- How to ron the MMP,
- Surface kIt singularities.

Theorem (Relative cone theorem): Let $X \xrightarrow{\varphi} Z$ be a projective contraction of ale var over $\mathbb{K}, \overline{\mathbb{K}}=\mathbb{K} \mathbb{\&}$ cher $(\mathbb{K})=0$. (X, Δ) kit pair. Then:
(1) There are countably many $C_{j} \subseteq X$ sit $\varphi\left(c_{j}\right)=p t, 0<-\left(K_{x}+\Delta\right) \cdot C_{j}<2 \operatorname{din} x$ and $\overline{N E}(X / Z)=\overline{N E}(X / Z)_{(K x+\Delta \mid 20}+\sum \mathbb{R}_{20}\left[c_{0}\right]$.
(2) For any $\varepsilon=0$ and φ-ample H,

$$
\overline{N E}(X \mid z)=\overline{N E}(X / z)_{(k x+\Delta+s+1) \geq 0}+\sum_{\text {finite }}^{i} \mathbb{R}_{20}\left[c_{j}\right]
$$

(3) Let $F \subseteq \sqrt[N E]{ }(X / z)$ be $2(K x+\Delta)$-neg extremal face.

$C \subseteq X$ is a mapped to a point iff $[C] \in F$.
(4) Cont $F: X \rightarrow Y$ as in (3). \mathscr{L} is 2 line bundle on X s.t $\mathcal{L} \cdot C=0$ for every curve C with $[c] \in F$.

Then there exists $\mathscr{L}_{Y} 2$ line bundle on Y with

$$
\mathscr{L} \simeq \operatorname{cont}_{F}^{*} \mathscr{L}_{r}
$$

we say that \mathcal{L} descends to Y.
Remark, so far everything is "for mel" consequence of Kodaira vanish \& resolution.

Some recent work:
Bhatt \& Lorie proved a version of Riemann - Hilbert correspondence in positive char.
Brat proved the Cohen-Maculayness of the integral closure of an excellent Noetherian domain

Using the above the techniques contained above the MMP has been recently generalized in two different directions:
1.- In dimension three in mixed charact (over spec \mathbb{Z}_{i}).

$$
\text { Bhalt - } M_{\alpha} \text { - } P_{2} t_{2 k j f i l v i ~-~ S c h w e d e ~-~ T u c k e r ~-~ W a l f r o n ~-~ W i t a z z e k ~}^{2021} \text {. }
$$

2.- In characteristic zero "mot" of the MMP works over an excellent Q-schem.

$$
\text { Morayamz - Leu } 2021
$$

Why MMP relative over base?
MMP to study families of algebraic varices.
χ projective smooth K_{x} is ample over \mathbb{C}^{*}.
\downarrow Compactify (arbitrary centric fiber, maybe not nomulu).
a* $\|$
Log resolution (many components, K_{x} not apple over er (C)

$$
\|
$$

Run MMP over the base.
$X \longleftrightarrow \bar{X}$ so that $K \bar{x}$ is nef over the base $\downarrow \downarrow$
$\mathbb{G}^{*} \longrightarrow \mathbb{G}$. the singularities of \bar{x}_{0} are sic.
normalization is L_{c}
nodal sing at cod one point.

MMP lo study singularities.
$z \in Z \quad a \log$ resolution $X \xrightarrow{\varphi} Z$.

$$
e^{*}\left(K_{z}\right)=K x+\Delta
$$

Perturb coefficients of $\Delta:$ - If >1, you can decrease bo 1

- If <0, you can increase them $\varepsilon \geq 0$.

Obtain a new boundary B.
Run a MMP for $K x+B$ over Z, you obtain a partial resolution of singularities which has the singularities of the minimal model program.

Remark: By studying the exceptioml divisors of the previous partial resolution \& the sing of the MMP, you can understand the singularities of $Z \nexists z$.

Flipping contractions \& flips:
Definition: $\quad X \xrightarrow{\varphi} W$ is a flipping contraction for (X, Δ) kit if (Q-factorial $P(X / W)=1, \quad \varphi$ is a small birational contr., and $-\left(K_{x}+\Delta\right)$ is ample over W.
(You can have small mopphums with high ρ)
Remark: W is never Q-factorial. K_{w} is not Q-Carter.
Definition: Let $X \xrightarrow{\varphi} W$ be a flipping contraction. for (x, Δ). We say that $X-\xrightarrow{\pi} \rightarrow X^{+}$is a flip if it is a small birational map, $K_{x^{+}}+\Delta^{+}$is Q-Cartier $\left(\Delta^{+}=\pi_{*} \Delta\right)$
There is a prog morphism $\varphi^{+}: X^{+} \longrightarrow W$ so that $K x^{+}+\Delta^{+}$is ample over W.

Lemma 1: $f: X \rightarrow Y$ small birabional map between normal var. $D \in W \operatorname{Div}(X)$. Then

$$
H^{0}\left(\theta_{x}(D)\right) \simeq H^{0}\left(\theta_{r}(f * D)\right) .
$$

Picture of flip:
$K_{x}-$ neg curves.
r $k x^{+}$-positive comer

Lemma a 2: Let $X \xrightarrow{\varphi} W$ be a flipping cont for (x, Δ). Let $x-\stackrel{r}{\rightarrow} x^{+}$be a flip. Then $\rho(x)=\rho(x+)$ and X^{+}is Q-factorial. Moreover, $\rho(x / w)=\rho\left(x^{+} / w\right)=1$.

Proof: D^{+}on X^{+}, D on X the push-forwerd.
Find r such that $R \cdot\left(D+r\left(K_{x}+\Delta\right)\right)=0$
Here R is the extrema ray defining the flipping contraction.
We know X is Q-factorial. Hence
$m(D+r(K x+\Delta))$ is Cartier for $m>0$.
$m\left(D+r\left(k_{x}+\Delta\right)\right) \sim \varphi^{*}\left(D_{w}\right)$ for some D_{w} Cater

$$
\begin{aligned}
& m D^{+}=m \pi * D \sim \underbrace{\left(\varphi^{+}\right)^{*} D_{w}}_{C_{\text {arbiter }}}-c m r) \underbrace{\left(K K_{x}++\Delta^{+}\right.}_{C_{\text {artier }}}) \\
& X \rightarrow X^{+} \\
& \varphi\rangle_{W}^{\ell+} \\
& \text { Cartier. }
\end{aligned}
$$

For equality of P, we prove the π_{*} induces an isomorphism between Wei divisors modulo \sim

Lemma 3: $X \xrightarrow{\varphi} Y$ a projective contraction between normal varieties with $\rho(X / Y)=1$. and $-K x$ ample over Y.
Assume that $\operatorname{dim}\left(E_{x}(\varphi)\right)=\operatorname{dim} X-1$. Then φ contracts a unique prime divisor E.
Remarks: We call such φ a divisorial contraction.
Proof: Let's say there are two divisors $E_{1} \& E_{2}$.
We can find C_{i} covering E_{1} with $C_{i} \cdot E_{i}<0$.
We can find a so that $E_{1}+a E_{2} \equiv r 0$.
$\mathrm{Cl}_{\text {aim }}$: that a is positive.
Assume C_{1} does not int E_{2}

$$
C_{1} \cdot\left(E_{1}+a E_{2}\right)=C_{1} \cdot E_{1}<0, \text { pick } C_{1} \text { general inside } E_{1}
$$

we may assume $E_{2}, C_{1} \geq 0$. Hence.

$$
C_{1} \cdot E_{1}+a \quad E_{2} \cdot C_{1}=0 \quad \text { so } \quad a=\frac{-C_{1} \cdot E_{1}}{E_{2} \cdot C_{1}}>0
$$

E is an effective divisor which is contracted so it mast be covered by E - negative curves.
We conclude that E_{\perp} must be the only component

Proposition. Let $\varphi_{i} X \rightarrow W$ be a flippiry contraction. for (x, Δ) kIt. The flip exists iff
$\bigoplus_{m \geq 0} \varphi_{*} O_{x}\left(m\left(K_{x}+\Delta\right)\right)$
152 fg . (1) $)_{W}$-algebra. If this is the case, then

$$
X^{+}:=\operatorname{Prog}_{w}\left(\bigoplus_{m 20} \varphi_{*} \theta_{x}\left(m\left(k_{x}+\Delta\right)\right)\right)
$$

Proof: Assume $\quad X-{ }^{R} \rightarrow X^{+} . \quad \pi$ is small.
$\varphi \bigvee_{W} \iota^{+}$

$$
\bigoplus_{m \geq 0} \varphi_{*} \theta_{x}\left(m\left(k_{x}+\Delta\right)\right) \simeq \bigoplus_{m=0} \varphi_{x}^{+}\left(\theta_{x^{+}}\left(m\left(k_{x^{+}}+\Delta^{+}\right)\right)\right.
$$

by Lemma 1. Moreover $K_{x^{+}}+\Delta^{+}$is ample over W. Hence, $\quad \operatorname{Prog}_{w}\left(\bigoplus_{m=0} \varphi_{x}^{+}\left(O_{x^{+}}\left(m\left(k_{x+}+\Delta^{+}\right)\right)\right) \simeq X^{+}\right.$.

Assume $\bigoplus_{m=0} \varphi_{*}\left(O_{x}\left(m\left(K_{x}+\Delta\right)\right)\right.$ is fig $\theta_{w}-2$ geber and define $X^{+}=\operatorname{Proj}(\square)$.
$X-{ }^{r} \rightarrow X^{+}$is an lisom in cod one X.
it could happen that there exists $E \subseteq X^{+}$sit $\pi_{\star}^{-1} E$ is not $2 d u$.
$X \xrightarrow{\varphi} W$ is an isomorphism over $X \backslash E_{X}(e)$.
$\bigoplus \oplus_{m \geq 0} \varphi_{*} \Theta_{x}\left(m\left(K_{x}+\Delta\right)\right)$ i jut som of copies of the stroctove shes on $X \backslash E_{x}(\varepsilon)$.

Hence $X^{+} \xrightarrow{n-1}_{\longrightarrow} X$ is an isomorphism over $X \backslash E_{X(c)}$

E is a mapped to a higher codim cycle by e^{+}

$$
\varphi_{*}^{+} \theta_{x}(1) \simeq \varphi_{*} O_{x}\left(m\left(K_{x}+\Delta\right)\right) \simeq \theta_{w}\left(m\left(k_{w}+\varphi_{*} \Delta\right)\right)
$$

for some $m>0$. Since E is exc over W, we have

$$
\Theta_{w}\left(t m\left(K_{w}+\varphi_{*} \Delta\right)\right)=\varphi_{*}^{+}\left(_{x^{+}}(t) \underset{+}{c} \varphi_{*}^{+} \Theta_{x^{+}}(t)(E)\right.
$$

We have a natural inclusion $\quad \longrightarrow \longleftarrow$

$$
\varphi_{*}^{+}\left(O_{x}+(t)(E) \longleftrightarrow \theta_{w}\left(t_{m}\left(K_{w}+\varphi_{x} \Delta\right)\right)\right.
$$

No contracted divisors by φ^{+}. Thus, π is small By Lemma 2, $\quad \rho(x / w)=\rho(x+w)=1$.

Finite generation of the canonical ny:
Conj: Let $X \xrightarrow{\varphi} Z$ prog mopphism (X, Δ) kit.
Then $\oplus_{m \geq 0} \varphi_{k} \Theta_{x}\left(m\left(K_{x}+\Delta\right)\right)$ is a ff Θ_{z}-algebra.
$R_{m k}: X$ smooth prog variety, $\left.\oplus_{m \geq 0} H^{0}\left(X, O_{x} C_{m} K_{x}\right)\right)$
is finitely generated over $\mathbb{I} \mathbb{\Omega}$. (is a part case of conj).
How to ron the MMP: X_{1} to be Q-fectorial.
1.- $\left(X_{i}, \Delta_{i}\right)$ kit pair, $X_{i} \rightarrow Z$ prog morph.

If $K_{x_{i}}+\Delta_{i}$ nef over Z, then we slop and call this
2 minimal model over Z.
If $K_{x_{i}}+\Delta i$ is not net over Z, we consider an extremal ray R in $\overline{N E}\left(X_{i} / Z\right)$ which is $\left(K_{x_{i}}+\Delta_{i}\right)$-neg.
2.- Let $X_{i} \rightarrow W$ be the contraction defined by R.
a) $\operatorname{dim}(W)<\operatorname{dim}\left(X_{i}\right)$, $-K_{x_{i}}$ ample over W and the general fiber kit. Hence, the general fiber is kilt Fans. In this care we stop and call this a Mon fiber space.
b) $\operatorname{dim} X=\operatorname{dim} W_{i}$ and $X \xrightarrow{f} W$ contains a divisor in its exc locos. By Lemma 3 this is a divisorial contraction W is a-factorial, $\quad \rho(W / Z)=\rho(X / Z)-1$.
We denote $X_{i+1}:=W \& \Delta_{i+1}=f *\left(\Delta_{i}\right)$.
Return to step 1.
Remark: Using neg Lemme, we can prove $\left(X_{i+1}, \Delta_{i+1}\right)$ is kit.
c) $\operatorname{dim}(X)=\operatorname{dim}(W)$ and $X \rightarrow W$ small fir map. "We find the flip" $X \xrightarrow{n} X^{+}$and define

$$
X_{i+1}=X^{+} \text {and } \quad \Delta_{i+1}=\pi_{*} \Delta_{i}
$$

By Lemma $2 \times \operatorname{ng}$ lemma, X_{i+1} is Q-fact provided that X_{i} is Q-factorial and $\rho\left(X_{i} / z\right)=\rho\left(X_{i+1} / z\right)$.
Return to step 1.
Possible outcomes: Minimal Model or Morifiber space Abundance (MES). Canonical Model

Singularities when running the MMP:
Proposition: Let (X, Δ) be a log canonical parr (resp. kit, canonical, terminal). Let $(X, \Delta) \xrightarrow{\pi} \rightarrow\left(X^{\prime}, \Delta^{\prime}\right)$ be a step of the $\left(K_{x}+\Delta\right)-M M P$. Then $\left(X^{\prime}, \Delta^{\prime}\right)$ is log canonical (resp. kt, canonical, terminal).
Let E be a prime trusisor over X whose center is contained in $E_{X}(\pi)$. Then, we have an inequality

$$
\alpha_{E}\left(X^{\prime}, \Delta^{\prime}\right)>a_{E}(X, \Delta) .
$$

Proof: Let $p: Y \longrightarrow X$ be a \log resolution of (X, Δ) which dominates X^{\prime}. Let $q: Y \longrightarrow X^{\prime}$ be the corresponding projective birational morphism.

Write $p^{*}(k x+\Delta)=q^{*}\left(k x^{\prime}+\Delta^{\prime}\right)+F_{1}-F_{2}$,
where F_{1} \& F_{2} are effective with disjoint support.
The divisor $F_{1}-F_{2}$ is q-exceptional,
by the projection forrowla it is anti-nef over X^{\prime}.

Since the push-forward of $F_{1}-F_{2}$ to X^{\prime} is eff, we conclude that $F_{2}=0$, so the first statement holds. Indeed, for any $E \subseteq Y$ prime we have:
(1)

$$
\begin{aligned}
O_{E}\left(X^{\prime}, \Delta^{\prime}\right) & =a_{E}(X, \Delta)+\operatorname{coeff}_{E}\left(F_{1}\right) \\
& \geq a_{E}(X, \Delta) .
\end{aligned}
$$

Now, we want to prove that if $C_{x}(E) \subseteq E x(\pi)$. then (1) is strict. Equivalently that $E \subseteq \operatorname{supp}\left(F_{2}\right)$. Note that $C_{x^{\prime}}(E) \subseteq E x\left(\pi^{-1}\right)$. Applying the and part of negalvity Lemma we get that either
i) $E \subseteq \operatorname{supp}\left(F_{1}\right)$, or
ii) $E \cap \operatorname{supp}\left(F_{1}\right)=\varnothing$

Take $C \subseteq Y$ and mapping to a point in X^{\prime} so that E. $C<0$. Hence, we conclude that

$$
p^{x}(k x+\Delta) \cdot c>0
$$

This leads to a contradiction because $-p^{*}\left(K_{x}+\Delta\right)$ is nef over W.

Surface singularities of the MMP:
Theorem: The following statements hold:

1. $(x \in X)$ is a surface kit sroularity \Longleftrightarrow $(x \in X)$ is the quobient of $\left(o \in \mathbb{C}^{2}\right)$ by a finite subgroup of $G L_{2}(\mathbb{Q})$.
2. $(x \in X)$ a canonical surface singularity \Longleftrightarrow
$(x \in X)$ is the quotient of $\left(0 \in \mathbb{G}^{2}\right)$ by a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$
3. $(x \in X)$ is terminal surface sy $\Longleftrightarrow x$ is a smooth point X

Idea: K_{x} is Q-Cartier, we can take its index one cover.

$$
G G Y \xrightarrow{\pi} X \quad X=Y / G
$$ finite Galois quesi-étzle

K_{r} is 2 Cartier divisor, Y is again kit and since K_{r} is cahier its log discrepancies are in $\mathbb{Z}_{1}>0$ so is canonical

Du Val singularities:
Theorem: Let $x \in X$ be a canonical surface sing
Then $x \in X$ has embedtry dimension three. Moreover. up to analytic change of coordinates, the folloung is a complete list of the possible singularities.:
$A=A_{n}(n \geqslant 0)$ has eg $x^{2}+y^{2}+z^{n+1}=0$ and dual graph
$D: D_{n}(n \geqslant 4)$ has eg $x^{2}+y^{2} z+z^{n-1}=0$ and dual graph

$E: \quad E_{6}: \quad x^{2}+y^{3}+z^{4}=0$

$E_{7:} \quad x^{3}+y^{3}+y z^{3}=0$ $0 \rightarrow 0.0$
$E_{8:} x^{2}+y^{3}+z^{5}=0$

ILea of the proof: Study dual graph of the resolution \& us W. preparation theorem to write down the es.

